
Dong	In	Shin
Taejin Infotech





 I/O	demand	is	very	high.
 Social	Network	Services
 Cloud	Platform
 Desktop	users

 Storage	system	has	suffered	from	small	random	I/O	
accesses	
 Random	throughput	of	a	disk	<	1	MB/s

 Fast	Next‐generation	storage	devices	are	coming.
 Access	Mechanism:	Magnetics	 Electronics
 Low‐latency	 Good	for	random	I/O	performance
 Flash‐SSD,	DRAM‐SSD,	PCM‐SSD,	…



SSD

OS’s	
Storage	Stack

Application
What	matters	us	!
(Application	throughput)

What	vendors	give	to	us
(Device	throughput)

Different
Performance	
Number!



SSD

OS’s	
Storage	Stack

Application

Synchronous	I/O	Path

MSST’10,	“High	Perf.	SSD	….”
MICRO’10,	“Moneta:	…”
HotStorage’11,	“Onyx:	…”

FAST’12,	“When	Poll	is	better	…”

1) Use	Poll	instead	of	Interrupt
2) Remove	Delayed‐Execution
(e.g.	I/O	scheduler,	SoftIRQ handler)

We	will	call	it	“Sync+Poll”



 Jetspeed DRAM‐SSD	
 Next	generation	SSD	developed	by	TAEJIN	Infotech.
 DDR2	64	GB,	PCI‐Express	interface.
 7~8	usec for	reading/writing	a	4KB	page
 Peak	device	throughput:	700	MB/s	



poll

No	“kblockd”
No	“SoftIRQ”



Peak	Device	Throughput

Performance	Wall	(75000	IOPS≈13us/4KB)

Can’t	merge	writes	under	Sync+Poll



 Lesson
 Large	data	transfer	is	still	important	!

 How	to	make	a	large	request	?

Read‐ahead under	sequential	read	pattern
 Still	effective	on	(Sync+Poll)

Request	merge under	sequential	write	pattern
 (Sync+Poll)	cannot	accumulate	I/O	requests

 No	way	to	make	a	large	request	under	random	
access	pattern	!



High	Throughput	

Minimize
Per‐Request	
Latency

Mitigate
Per‐Request	
Latency



Temporal	Merge

Combines	multiple	(even	non‐sequential)	
requests	within	a	short	time	window,	and

Dispatches	them	by	using	a	new	I/O	
interface



8	Block	Reqs.
 4		I/O	Reqs.

8	Block	Reqs.
 1		I/O	Req



 Each	thread	submits	a	block	
request.

 Only	one	thread	becomes	a	
“winner”.

 The	winner	combines	
concurrent	block	requests	into	
one	and	dispatches	it	by	using	
the	new	interface.

 The	losing	threads	yield	CPU	
and	sleep	until	the	completion	
of	their	requests.

 Synchronous	Temporal	Merge
 No	plugging/unplugging	is	

required	during	merge	operation.



 Advantage
 Balance	of	Synchronous	I/O	path	and	Batching
 Low‐latency	(No	sleep/wakeup	for	a	winner)	
 High‐throughput	(Oblivious	to	block	access	pattern)

 Disadvantage
 Merge	Count	(i.e.	Benefit)	is	limited	by	Concurrency.	
 Concurrency:	the	maximum	number	of	threads	entering	into	
I/O	subsystem	
 Due	to	‘delayed	write’	semantics,	the	concurrency	is	usually	
lower	than	the	number	of	user	threads	that	issued	write	
requests.



 How	to	merge	I/O	requests	even	when	the	
number	of	I/O	threads	is	very	low?
Utilize	I/O	scheduler	again,	
But	this	time,	do	it	with	“the	extended	I/O	
interface”

 The	result	would	depend	on	tradeoff	bet’n
 The	advantage	of	large	data	transfer	
 The	disadvantage	of	increased	latency



• Each	thread	piles	up	I/O	requests	 in	a	
request	queue.

• “kblockd”	or	“user	process”	
1)	fetches all	the	block	requests,	
2)	merges	them,	
3)	dispatches	the	merged	request

• Cache‐friendly	request	retirement	by	
using SoftIRQ (instead	of	Inter‐Processor‐
Interrupt	used	in	MSST’10)

• Tune	a	few	parameters
• unplug_thresh,	scheduler,	…

• Asynchronous	Temporal	Merge
– Use	plugging/unplugging
– Effective	even	when	the	concurrency	is	

low



 Advantage
 It	could	maximize	the	accumulation	of	block	
requests	in	a	queue	when	the	concurrency	is	low.

 Disadvantage
 Existing	I/O	schedulers	(in	Linux)	are	not	designed	
to	accumulate	read	requests.
 If	a	device	is	idle,	a	newly‐arriving	read	request	is	
immediately	dispatched	by	an	unplug	invocation	with	
holding	a	queuelock spinlock.



 Environment
 CPU:	8	Cores	(Xeon	E5630@2.5GHz)
RAM:	2	GB	(out	of	16	GB)	is	used.
 I/O	subsystems	(see	next	slides)
Async+Intr,	Sync+Poll,	STM+Poll,	ATM+Poll

Benchmarks
 Iozone,	Postmark



Typical	Storage	Stack

File	System

Generic	Block	Layer

SCSI	Subsystem

Upper	level

Mid	level

Lower	level

SSD

Application

I/O	Scheduler

Async+Intr

Customize	this	layer	to	
Translate	SCSI‐command	into	
Device‐specific		command.	



Typical	Storage	Stack

File	System

Generic	Block	Layer

SCSI	Subsystem

Upper	level

Mid	level

Lower	level

SSD

Application

I/O	Scheduler

STM

ATM

Sync



Peak	 Device	Throughput



 STM	achieves	85%~100%	of	the	peak	device	throughput.
 ATM	achieves	95%~100%	of	the	peak	device	
throughput	except	for	the	Random‐Read	access	pattern.

Seq.R Seq.W Rand.R Rand.W
Async+Intr 82% 68% 22% 28%
Sync+Poll 93% 44% 46% 45%
STM+Poll 100% 85% 88% 92%
ATM+Poll 95% 100% 43% 96%



Peak	 Device	Throughput

1 1.27 1.26
1.74



 Temporal	Merge
 Enables	I/O	subsystem	to	dispatch	discontiguous
block	requests	by	using		an	extended	I/O	interface

 Helps	to	achieve	near‐peak	device	throughput	from	
random	access	workload

 Future	work
 Standardization.	(NVMHCI)
 Reliability	(atomic	update)
 Parallelism	(RAID,	storage	network)
 Hybrid	solution	with	Flash	+	HDD


